Course Type	Course Code	Name of Course		T	P	Credit
DE	NGLD506	NGLD506 Modern Instrumental Methods in Exploration Geosciences		0	0	3

Course Objective

The objective of the course is to present an introduction to Modern instruments their working principal

Learning Outcomes

Upon completion of the course, students will be able to:

- Learn the fundamentals and working principal of analytical instruments
- > Understand sample preparation techniques for different analysis
- > Limitations of the instrumentation in their field of applications
- > Use of instruments for specific purposes in exploration

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome			
	Analytical Methods in Geochemistry: Classical and rapid methods of analysis, sample digestion techniques, fusion		This will help the student to understand the basic classical method			
	techniques, gravimetry, determination of concentration of major cations by photometry, chromatography	9	in geochemistry.			
2	Mineral Studies: X-Ray Diffractometry, Secondary Electron Microscopy, Electron Probe Micro Analysis, Cathodoluminescence, Thermoluminescence, Optically Stimulated Luminescence.	9	The topic will elaborate on the nondestructive analysis of geological samples.			
3	Optical and X-Ray Spectrometry: Atomic Absorption Spectrometry (AAS), Inductively Coupled Plasma – Atomic (Optical) Emission Spectrometry (ICP-AES/OES), X-Ray Fluorescence Spectrometry, Energy Dispersive and Wavelength Dispersive Techniques	9	This topic will give understanding about trace element analysis.			
4	Mass Spectrometry (part 1): Inductively Coupled Plasma - Mass Spectrometry (ICP-MS), Thermal Ionization Mass Spectrometry (TIMS),	7	Students will get fundamental ideas about isotopic analysis.			
5	Mass Spectrometry (part 2): Isotope Ratio (Gas Source) Mass Spectrometry (IRMS/GSMS), Secondary Ion Mass Spectrometry (SIMS/SHRIMP), Laser Ablation techniques.	8	Students will get fundamental ideas about the sample preparation, and about isotopic analysis and their applications in the different field of geosciences			
	Total Classes	42				

Textbooks:

- 1. Potts. P.J. (1996) A Handbook of Silicate Rock Analysis, Chapman and Hall, London, 622 pp.
- 2. Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation, Pearson Education Limited, Harlow, 352 pp.